Generative Soundscape 0.1.2

 

Concept

This installation pursues playful collaboration. By placing the modules through arbitrary configurations the idea behind this collective experience is to create scenarios where people can collaboratively create infinite layouts that generate perceivable chain reactions. The way to trigger the installation is through a playful gesture similar to bocce where spheres can ignite the layout anywhere in the installation. 

 

Prototyping

After an apparent success –context-specific– and consequent failure –altered context– the project turned onto a functional alternative. The next process better illustrates it.

 

These images show the initial thought out circuit that included a working sound triggered by a –static– threshold. We also experimented with Adafruit's Trinket aiming towards circuit simplification, cost-effectiveness and miniaturization. This shrunk micro controller is composed by an ATTiny85 nicely breadboarded and boot-loaded. In the beginning we were able to upload digital output sequences to drive the speaker and LED included in the circuit design. However, the main blockage we manage to overcome in the end was reading the analog input signal used by the microphone. The last image illustrates the incorporation of a speaker amplifier to improve the speaker's output.

 

These two videos were an initial proof of concept of a module’s ability to detect sound and amplify it.

1. the functional prototype that includes a hearing spectrum –if the microphone senses a value greater than the set threshold, stop hearing for a determined time– 

2. the difference between a normal speaker output signal and an amplified speaker output signal. 

After the first full-on tryout, it was clear that a dynamic threshold –the value that sets the trigger adapts accordingly to its ambient–. The microphone however, broke one day before the deadline, so we never got to try this tentative solution –even though there's an initial code–.

 

Next Iteration –Prototyping Function & Form

Plan B, use the Call-To-InterAction event instead. In other words, use collision and the vibration it generates to trigger the modules through a piezo. Here's the code.

A couple videos that illustrate the colliding key moments that trigger the beginning of a thrilling pursue.

 
 

And because sometimes, plan-b also glitches... Special thanks to Catherine, Suprit and Rubin for play testing

 
 
 

Generative Soundscape Concept

When studying Interactive Technologies at NYU’s Interactive Telecommunications Program, I was working towards an interactive installation that blended the bowling gesture to trigger scattered half-spheres to generate a musical experience. This is an evolved and collaborative idea, from the Generative Sculptural Synth. The ideal concept is an interactive synthesizer that's made up of replicated modules that generate sound. It is triggered by sphere that creates chain-reaction throughout the installation's configuration.

 

Methodology: Iterative Concept and Prototyping

Tools: Arduino and Little Bits

Deliverables: Prototype of a modules that communicate and trigger through motion and sound range

It started out as re-configurable soundscape and evolve into an interactive –bocce-like– generative instrument. Here's a inside scoop of the brainstorming session were we –with my teammate– sought common ground. (1. Roy's ideal pursuit 2.My ideal pursuit 3.Converged ideal)

Audio Input Instructable

It started out as re-configurable soundscape and evolve into an interactive –bocce-like– generative instrument. Here's a inside scoop of the brainstorming session were we –with my teammate– sought common ground. (1. Roy's ideal pursuit 2.My ideal pursuit 3.Converged ideal)

Littlebits –whatever works–

After the slum dunk failure of the DIY Audio Input, I realize the convenience –limited– of prototyping with Littlebits. This way, I could start concentrating in the trigger event, rather than getting stuck at circuit sketching. I was able to program a simple timer for module to "hear" –boolean triggered by the microphone– and a timer for the module to "speak" –boolean to generate a tone–. What I learnt about the limitations of the Littlebit sensor is a twofold. They have a Sound Trigger and a conventional Microphone. Both bits' circuits have the embedded circuit solved out which turned out to be useful but limiting. The Sound Trigger has an adjustable Gain, an embedded –uncontrollable– 2 second timer and a pseudo-boolean output signal. So even though you can adjust it's sensibility, you can't actually work around with its values in Arduino IDE. The Microphone bit had an offsetted (±515 serial value) but its gain was rather insensible.

This is why, when conveniently using the Sound Triggers, the pitch is proportional to the distance. In other words, the modules are triggered closer when lower pitches are sensed and vice versa. However, since these bits –Sound Trigger– are pseudo-boolean, there can't be a Frequency Analysis.

Generative Synthesizer Prototype

This is a followup in the Generative Propagation concept. What I intended to answer with these exercises are two questions:

  1.  How can the trigger threshold be physically controlled? (How can the mic’s sensitivity be manipulated?)
  2. How can the tempo be established? (How often should each module emit a sound?)

The trigger threshold can be manipulated through manually controlling the microphone’s gain or amount voltage transferred to the amplifier –Potentiometer to IC–. 

By manipulating this potentiometer, the sensitivity of the microphone can be controlled.

The tempo can be established through timing the trigger’s availability. By setting a timer that allows the a variable to listen again, the speed/rate at which the entire installation reproduces sounds can be established.

Generative Synthesizer Concept

Can unpredictable melodies be created out of Constellaction’s concept?

Composition

Modules will bridge through consecutive emissions and receptions of sound. In the end, the purpose is to create a a cyclic chain that sets the stage for a greater pursue: creating a generative audio experience –like a tangible tone matrix–. In this exercise I will explore simple initial attributes such as trigger-thresholdand tempo.

Concept

How can sound-modules resemble basslines through replication? For the first phase of this project, I will explore ways of creating a module that, triggered by a sound, generate auditive-chain reactions.

Tone Matrix

Tone Matrix

Context

The general idea is to create different behaviors with these modules to the extent that they become generative. In this particular exercise –Mid-Term–, the idea is to create looped compositions that resemble bassline. By scaling these modules, emergent and unpredictable scenarios can appear.

 
 

BOM (Bill Of Materials)

  • Sound receiver (9 Microphone)
  • Sound emitter (9 Piezo–Buzzer)
  • Arduino
  • ATTiny
  • Battery (Coin Cell)
  • Controller (Potentiometer/Switch?)
  • 3 Trigger threshold
  • 3 Tempo
  • 3 PCB